

Date:30/09/2001Rev.:3Rev. Date.:26/06/2002

Simultaneous measurement of Roundness and Diameter of Solder Balls for BGA

Introduction

ANKERSMID

BGA

Solder Spheres (or Solder Balls as they are often called) are used in BGA (Balls Grid Array) devices as the connectors between the package and the electrical board where it will be used.

The most common diameters are: 750μ , 500μ , 400μ , 350μ and 300μ .

Quality:

The quality of the Solder Spheres depends on the consistency and tight tolerance of two main dimension factors

Fig. 1 – Solder balls

- 1. **Size Distribution** (diameter of the Spheres):
- Typical specification- 99% of the Spheres should lie within the size range: ± 10 im
- Sphericity (roundness of the Spheres): Typical specification- 99.95% of the Spheres should lie within the range: ±4.0 im

Using spheres with properties outside these tolerances may cause problems in the ball placement process and in the final device performance.

Quality Control:

The Diameter and Sphericity of the Solder Spheres are normally measured by Microscope or by close loop DSP (Digital Signal Processing). Both methods measure stationary spheres and are both time consuming and labor intensive. Consequently the traditional methods support relatively small samples from each production lot (usually less than 100 spheres). Measuring roundness by optical mean where spheres are laying stationary on a surface is both inefficient and inaccurate as the spheres will tend to settle on the least round part on their surface (the hidden side from the camera).

Date:30/09/2001Rev.:3Rev. Date.:26/06/2002

Instrumentation

Requirement

Equipment for measuring Size (Diameter) and Shape (Roundness) in an Automatic, Accurate and Fast method.

Solution

DSA-10 – Dynamic Shape Characterization System

The Ankersmid Dynamic Shape Analyzer, DSA-10, is a complete shape characterization system for particles in motion. Comprehensive particle analysis is obtained through the unique combination of a synchronous strobe light source and video microscope technology. All particles are fully classified by numerous shape parameters including Diameter and Aspect Ratio^{*} (roundness).

An automatic flow controller (LFC-101) is used to flow the particles through the measuring cell. A video microscope camera synchronized with strobe light captures "still" images continuously while particles are in dynamic flow. The images are enhanced, processed, and analyzed automatically to ensure full representation of the sample. Accurate results are produced in a fraction of the time normally required for microscopic observation.

 Aspect Ratio – Shape parameter of an object given as the ratio between the min ferret diameter to the max ferret diameter. The factor is 1 for a perfect circle and close to 0 for a line.
 Aspect Ratio = (Min Ferret) / (Max Ferret)

Tuble 1 medsurement set up comgutation						
	Synchronized strobe light with adjustable intensity and duration.					
Illumination						
Video camera	High resolution B&W CCD camera, 768x493 pixels.					
Shape range	Lenses	Objective	F.O.V	mar∕Pix	Range [m]	
		magnification			_	
	Lens DW	6х	1500x1200µ	2.3	10-600	
	Lens EW	1.4x	6200x4500μ	9.5	20-3000	

Table 1 - Measurement set-up configuration

Date:30/09/2001Rev.:3Rev. Date.:26/06/2002

DSA-10 produces variety of output presentation: Tables, Graphs, as shown in the figures below:

Fig. 3 - Equivalent Diameter distribution of 1000 Solder Spheres of diameter 750m

Fig. 4 – Aspect Ratio distribution of 1000 Solder Spheres

Date:30/09/2001Rev.:3Rev. Date.:26/06/2002

Summary

ANKERSMID

Measurement Methodology						
	Microscope	DSP	DSA-10			
1	Stationary particles	Stationary particles	Particles in dynamic flow			
2	Long measuring duration.	Long measuring duration.	Fast & Automatic Analysis			
3	Human dependant	Human dependant	Automatic computer control measurement			
4	small sample (usually < 100 particles)	small sample (usually < 100 particles)	Shape measurements on tens of thousands of particles			

References

- 1. Aharonson; Karasikov, N.; J. Aerosol Science, 1986, 17, 530-536
- 2. Karasikov, N.; Krauss, M.; Barazani, G., In *Particle Size Analysis*, Lloyd, P.J Ed.; John Wiley & Sons: New York **1988**.
- 3. Weiner, B. B.; Tscharnuter, W. W.; and Karasikov, N.; *Improvements in Accuracy and Speed Using the Time-of-Transition Method and Dynamic Image Analysis for Particle Sizing*, Theodore Provder, American Chemical Society, **1998**